Characterizations of the Radon-nikodym Property in Terms of Inverse Limits
نویسندگان
چکیده
We show that a separable Banach space has the RadonNikodym Property (RNP) if and only if it is isomorphic to the limit of an inverse system, V1 ← V2 ← . . . ← Vk ← . . . , where the Vi’s are finite dimensional Banach spaces, and the bonding maps Vk−1 ← Vk are quotient maps. We also show that the inverse system can be chosen to be a good finite dimensional approximation (GFDA), a notion introduced in [CK06]. As a corollary, it follows that the differentiation and bi-Lipschitz non-embedding theorems in [CK06], which were proved for maps into GFDA targets, are optimal in the sense that they hold for RNP targets.
منابع مشابه
Characterization of the Radon-nikodym Property in Terms of Inverse Limits
In this paper we clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho [JH81], and the GFDA spaces introduced in [CK06].
متن کاملRealization of Metric Spaces as Inverse Limits, and Bilipschitz Embedding in L1 Jeff Cheeger and Bruce Kleiner
We give sufficient conditions for a metric space to bilipschitz embed in L1. In particular, if X is a length space and there is a Lipschitz map u : X → R such that for every interval I ⊂ R, the connected components of u−1(I) have diameter ≤ const ·diam(I), then X admits a bilipschitz embedding in L1. As a corollary, the Laakso examples [Laa00] bilipschitz embed in L1, though they do not embed i...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملThe near Radon-nikodym Property in Lebesgue-bochner Function Spaces
Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.
متن کاملOn Almost Sure Convergence without the Radon-nikodym Property
In this paper we obtain almost sure convergence theorems for vectorvalued uniform amarts and C-sequences without assuming the Radon-Nikodym Property. Specifically, it is shown that if a limit exists in a weak sense for these martingale generalizations, then a.s. scalar and strong convergence follow. These results lead to some new versions of the Ito-Nisio theorem. Convergence results for random...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008